Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug;11(2):371-86.
doi: 10.1016/0896-6273(93)90192-t.

Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids

Affiliations

Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids

K Yamagata et al. Neuron. 1993 Aug.

Abstract

Prostaglandins play important and diverse roles in the CNS. The first step in prostaglandin synthesis involves enzymatic oxidation of arachidonic acid, which is catalyzed by prostaglandin H(PGH) synthase, also referred to as cyclooxygenase. We have cloned an inducible form of this enzyme from rat brain that is nearly identical to a murine, mitogen-inducible cyclooxygenase identified from fibroblasts. Our studies indicate that this gene, here termed COX-2, is expressed throughout the forebrain in discrete populations of neurons and is enriched in the cortex and hippocampus. Neuronal expression is rapidly and transiently induced by seizures or NMDA-dependent synaptic activity. No expression is detected in glia or vascular endothelial cells. Basal expression of COX-2 appears to be regulated by natural synaptic activity in the developing and adult brain. Both basal and induced expression of COX-2 are inhibited by glucocorticoids, consistent with COX-2 regulation in peripheral tissues. Our studies indicate that COX-2 expression may be important in regulating prostaglandin signaling in brain. The marked inducibility in neurons by synaptic stimuli suggests a role in activity-dependent plasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms