Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jun;2(6):663-72.
doi: 10.1093/hmg/2.6.663.

Evolutionary conservation of possible functional domains of the human and murine XIST genes

Affiliations
Comparative Study

Evolutionary conservation of possible functional domains of the human and murine XIST genes

B D Hendrich et al. Hum Mol Genet. 1993 Jun.

Abstract

The human XIST gene, a candidate for a role in X chromosome inactivation, has recently been cloned and sequenced, yielding a 17 kb cDNA with no apparent significant, conserved open reading frame. In addition, the XIST transcript has been localized within the nucleus to the Barr body by RNA in situ hybridization. This subnuclear localization and lack of any significant protein-coding potential suggest that XIST may act as a functional RNA within the nucleus. In the absence of a conserved open reading frame, we have turned to evolutionary studies as a first step toward elucidating a function for XIST in the process of X inactivation. While probes for XIST detect homologues in numerous eutherians, sequence comparisons require significant gapping and reveal identity levels intermediate between those seen for coding and non-coding regions in other genes. Further, sequence comparison of the most likely candidate open reading frame among several primate species reveals sequence changes not normally associated with protein-coding regions. Other features of XIST are conserved in different species, however, including the position of a major transcription start site and active X chromosome-specific DNA methylation patterns at the gene's 5' end. Finally, a possible molecular basis for differing propensity toward X inactivation between Xce alleles in mouse is investigated by comparing the sequence of the Xist conserved 5' repeats in mouse strains carrying different Xce alleles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources