Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Aug 15;216(1):57-66.
doi: 10.1111/j.1432-1033.1993.tb18116.x.

Ferredoxin binding site on ferredoxin: NADP+ reductase. Differential chemical modification of free and ferredoxin-bound enzyme

Affiliations
Free article
Comparative Study

Ferredoxin binding site on ferredoxin: NADP+ reductase. Differential chemical modification of free and ferredoxin-bound enzyme

I Jelesarov et al. Eur J Biochem. .
Free article

Abstract

The chloroplast enzyme ferredoxin: NADP+ reductase (FNR) catalyzes the reduction of NADP+ by ferredoxin (Fd). FNR and Fd form a 1:1 complex that is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. To localize lysine residues at the Fd binding site of FNR, the FNR:Fd complex (both proteins from spinach) was studied by differential chemical modification. In a first set of experiments, free FNR and the FNR:Fd complex were reacted with the N-hydroxysuccinimidyl ester of biotin. Biotinylated peptides and non-biotinylated peptides were separated on monovalent avidin-Sepharose and purified by high-performance liquid chromatography. Two peptides containing Lys18 and Lys153, respectively, were less biotinylated in complexed FNR than in free FNR. In a second set of experiments, free and complexed FNR were treated with 4-N,N-dimethylaminoazobenzene-4'-isothiocyano-2'-sulfonic acid (S-DABITC) to obtain coloured lysine-modified FNR. Protection of Lys153 was again found by modification with S-DABITC. In addition, Lys33 and Lys35 were less labelled in the S-DABITC-modified. Fd-bound enzyme. FNR modified in the presence, but not in the absence, of Fd was still able to bind Fd, indicating that the Fd-protected residues are involved in the formation of the Fd:FNR complex. The lysine residues disclosed by differential modification surround the positive end of the molecular dipole moment (558 Debye approximately 1.85 x 10(-27) Cm) and are located in a domain of strong positive potential on the surface of the FNR molecule. This domain we had proposed to belong to the binding site of FNR for Fd [De Pascalis, A. R., Jelesarov, I., Ackermann, F., Koppenol, W. H., Hirasawa, M., Knaff, D. B. & Bosshard, H. R. (1993) Protein Science 2. 1126-1135]. The prediction was based on the complementarity of shape between positive and negative potential domains of FNR and Fd, respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources