Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Sep;159(1):353-65.
doi: 10.1006/dbio.1993.1247.

Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor

Affiliations
Comparative Study

Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor

L M Bianchi et al. Dev Biol. 1993 Sep.

Abstract

During the early stages of auditory development, the inner ear (otocyst) releases an unidentified, diffusible factor that promotes neurite outgrowth from the associated statoacoustic ganglia (SAG). Using a variety of criteria, the present study compared the neurite- and survival-promoting properties of this otocyst-derived factor (ODF) to the neurotrophins NGF, BDNF, NT-3, and NT-4 and ciliary neurotrophic factor (CNTF). Ganglia known to respond to specific growth factors were cultured in the presence of ODF. ODF failed to promote neurite outgrowth from trigeminal, ciliary, sympathetic, or dorsal root ganglia, suggesting that ODF may have properties different from other identified growth factors. In complementary experiments, SAG explants were cultured in ODF, the neurotrophins, and CNTF. The extent of outgrowth was greatest in the presence of ODF and CNTF, with the neurotrophins having little effect. In neuron-enriched, dissociated cell cultures, ODF promoted both survival and outgrowth of SAG neurons. However, neither the neurotrophins nor CNTF, alone or in combination, promoted the survival or outgrowth of dissociated SAG neurons. Thus, the outgrowth seen in the explant cultures appears to be due to indirect effects via the ganglionic nonneuronal cells. The addition of anti-NGF antisera failed to block the activity of chick, rat, or mouse ODF, further indicating that NGF is not the primary component of ODF. Together, the results of this study indicated that the properties of the ODF are not mimicked by the neurotrophins or CNTF.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources