Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun;74(6):2634-40.
doi: 10.1152/jappl.1993.74.6.2634.

Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

Collaborators, Affiliations

Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

M Aratow et al. J Appl Physiol (1985). 1993 Jun.

Abstract

A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers (28-54 yr). Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL (IMP R2 = 0.97, EMG R2 = 0.81) and the TA (IMP R2 = 0.97, EMG R2 = 0.90), as well as during eccentric contractions (SOL: IMP R2 = 0.91, EMG R2 = 0.51; TA: IMP R2 = 0.94, EMG R2 = 0.73). IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

PubMed Disclaimer

Publication types