Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan 25;16(2):279-85.
doi: 10.1021/bi00621a019.

Metabolism of histones in avian erythroid cells

Metabolism of histones in avian erythroid cells

M T Sung et al. Biochemistry. .

Abstract

The synthesis and enzymatic modifications of histones by phosphorylation, acetylation, and methylation during erythroid cell maturation have been studied. All newly synthesized histones, H1, H5, H2a, h2b, h3, and H4 undergo phosphorylation; histones H2a, H2b, H3, and H4, are acetylated and histones H3 and H4 are methylated. This type of histone metabolism is common to all dividing cells and therefore may be related to the assembly of histones into chromatin subunits. In the nondividing reticulocytes, the synthesis of histone H5 continues, while all the other histones show negligible incorporation of [3H]amino acids. Furthermore, the reticulocytes show a unique pattern of enzymatic modification: phosphorylation of histone H2b, acetylation of histones H2a, H2b, H3, and H4, and methylation of histones H3 and H4. These "differentiation-linked" modifications are not dependent on histone synthesis, nor related to RNA synthesis, but may be related to the reorganization of chromatin in preparation for genomic inactivation.

PubMed Disclaimer

Similar articles

Cited by