Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Aug;94(2 Pt 1):769-76.
doi: 10.1121/1.408206.

Sound localization: effects of reverberation time, speaker array, stimulus frequency, and stimulus rise/decay

Affiliations
Comparative Study

Sound localization: effects of reverberation time, speaker array, stimulus frequency, and stimulus rise/decay

C Giguère et al. J Acoust Soc Am. 1993 Aug.

Abstract

This research assessed the ability of human listeners to localize one-third octave noise bands in the horizontal plane. The effects of reverberation time (absorbent versus reverberant room), stimulus center frequency (500, 1000, 2000, and 4000 Hz), stimulus rise/decay time (5 vs 200 ms) and speaker array (frontal versus lateral) were investigated for four subjects using a forced-choice speaker-identification paradigm. Sound localization scores were consistently lower in the reverberant room than in the absorbent room. They also revealed strong frequency and azimuthal effects. The benefit of a shorter rise/decay time was small and limited to low frequencies. The identification of a speaker position depended strongly upon the array in which it was embedded, primarily because localization in the lateral array led to frequency-dependent front/back confusions and response bias. The results also illustrated the importance of choosing a coordinate system based on the auditory cone-of-confusion to analyze localization data for speaker arrays spanning the aural axis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources