Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan-Feb;30(1):63-74.

Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation

Affiliations
  • PMID: 8374103

Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation

J P Baaijens et al. Biorheology. 1993 Jan-Feb.

Abstract

The stationary flow of blood in a two-dimensional model of the bifurcation of the human carotid artery is simulated numerically using a finite element method. The Reynolds number is taken as equal to 300, corresponding to the value during the end-diastolic phase of the heart cycle. As constitutive equations, the Newtonian model and the non-Newtonian power-law and Casson models are used. The chosen model parameters corresponded with blood. The flow in this geometry is determined by the branching of the artery and the existence of a reversed flow area in the internal carotid artery. From the results of this problem, we conclude that the general flow structure is not influenced by the generalized (non-)Newtonian models. However, there are differences that cannot be neglected. First, the generalized Newtonian models result in axial and secondary velocity profiles that have 5-10% lower maximum values compared to the Newtonian model. Second, the pressure has higher values in the case of the generalized Newtonian models, especially in the internal carotid artery where these models give maximal 25% higher pressure values. Third, along the divider wall, the wall shear stresses are lower for the generalized Newtonian models; near the apex, this difference is maximal 40% in case of the power-law model. The generalized Newtonian models give higher wall shear stresses along the non-divider wall than the Newtonian model, the maximum difference being 5%. And fourth, in the internal carotid artery the reversed flow area is 10% reduced by the generalized Newtonian models. In general, the differences are more pronounced in the case of the power-law model.

PubMed Disclaimer

LinkOut - more resources