Protective effects of antioxidants against endrin-induced hepatic lipid peroxidation, DNA damage, and excretion of urinary lipid metabolites
- PMID: 8375695
- DOI: 10.1016/0891-5849(93)90062-y
Protective effects of antioxidants against endrin-induced hepatic lipid peroxidation, DNA damage, and excretion of urinary lipid metabolites
Abstract
Oxidative stress is believed to play a pivotal role in endrin-induced hepatic and neurologic toxicity. Therefore, the effects of the antioxidants vitamin E succinate and ellagic acid have been examined on hepatic lipid peroxidation, DNA single-strand breaks (SSB), and the urinary excretion of lipid metabolites following an acute oral dose of 4.5 mg endrin/kg. Groups of rats were pretreated with 100 mg/kg vitamin E succinate for 3 d followed by 40 mg/kg on day 4, or 6.0 mg ellagic acid/kg for 3 d p.o. followed by 3.0 mg/kg on day 4 or the vehicle. Endrin was administered p.o. on day 4 2 hr after treatment with the antioxidant. All animals were killed 24 h after endrin administration. Vitamin E succinate pretreatment decreased the endrin-induced increase in hepatic mitochondrial and microsomal lipid peroxidation by approximately 60% and 40%, respectively. Ellagic acid pretreatment reduced the endrin-induced increased in mitochondrial and microsomal lipid peroxidation by approximately 76 and 79%, respectively. Both vitamin E succinate and ellagic acid alone produced small but nonsignificant decreases in hepatic mitochondrial and microsomal lipid peroxidation. A 3.3-fold increase in the incidence of hepatic nuclear DNA single-strand breaks was observed 24 h after endrin administration. Pretreatment of rats with vitamin E succinate, vitamin E, and ellagic acid decreased endrin-induced DNA-SSB by approximately 47%, 22%, and 21%, respectively. Pretreatment of rats with vitamin E succinate decreased the endrin-induced increase in the urinary excretion of malondialdehyde, acetaldehyde, formaldehyde, and acetone by approximately 68, 65, 70, and 55%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
