Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;58(1):92-9.
doi: 10.1111/j.1751-1097.1993.tb04908.x.

Pilot study on light dosimetry for endobronchial photodynamic therapy

Affiliations

Pilot study on light dosimetry for endobronchial photodynamic therapy

J P Marijnissen et al. Photochem Photobiol. 1993 Jul.

Abstract

Endobronchial photodynamic therapy (EB-PDT) using photofrin as the photosensitizer is currently being evaluated as a new treatment modality for inoperable endobronchial tumors. One of the current problems with EB-PDT is the lack of adequate light dosimetry, which hampers proper interpretation of treatment results. In this study exploratory light dosimetry experiments were performed in plastic bronchus models using either a microlens-tipped fiber (suitable for illumination of small superficial tumors) or a cylindrical diffuser fiber (suitable for intraluminal illumination or interstitial illumination of partially obstructing tumors). It is shown that the light fluence prescriptions of current clinical protocols yield a different fluence in tissue for each illumination modality. Depending on the actual placement of the cylindrical diffuser within the lumen, the light fluence at 5 mm depth in the homogeneous tissue model may vary by a factor of 3. The results were confirmed by in vivo experiments in the trachea of a pig. There is a possibility of enhanced tissue response by accidental hyperthermia induced during EB-PDT. The temperature rise was therefore estimated in vivo using a rat tumor model to mimic clinical EB-PDT. Temperature rises of at least 5 degrees C and 10 degrees C can be expected for intraluminal and intratumoral illumination, respectively, at 3.5 +/- 1 mm depth in tissue and 400 mW/cm diffuser output. Light fluence and its distribution in the bronchus strongly depend on the geometry and the optical properties of the tissue as well as on the technique of illumination. As a result of inadequate dosimetry, significant variations in treatment response between patients may be expected.

PubMed Disclaimer

Publication types

LinkOut - more resources