Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan 25;268(3):2134-40.

Recombinant human tumor necrosis factor alpha induces calcium oscillation and calcium-activated chloride current in human neutrophils. The role of calcium/calmodulin-dependent protein kinase

Affiliations
  • PMID: 8380590
Free article

Recombinant human tumor necrosis factor alpha induces calcium oscillation and calcium-activated chloride current in human neutrophils. The role of calcium/calmodulin-dependent protein kinase

M A Schumann et al. J Biol Chem. .
Free article

Abstract

The role of calcium in the action of tumor necrosis factor (TNF) on human neutrophils is not clear. With fluorescent cytometry, using the visible wavelength calcium probe, fluo-3, and patch clamping, we investigated whether TNF induces cytosolic free Ca2+ changes and Ca(2+)-activated Cl- current, respectively. Bath application of 1000 units/ml recombinant human TNF alpha (rhTNF alpha) induced a rise in cytosolic free Ca2+ in 75% of fluo-3-loaded cells, 25% of which displayed irregular patterns of oscillation. Addition of rhTNF alpha activated Cl- current in 80% of tested cells; the activated current was blocked by 10 microM 5-nitro-2-3-phenylpropylamino)benzoic acid, a Cl- channel blocker. The current was similarly activated by 1 microM ionomycin, a Ca2+ ionophore. To study the mechanism by which rhTNF alpha induced Ca(2+)-activated Cl- current, we examined the involvement of calcium/calmodulin-dependent protein kinase (CaM kinase). With intracellular application of the Ca2+ chelator 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (5 mM), the calmodulin antagonist (2 microM), CaM kinase II-(290-309), or the inhibitory peptide (10 microM), CaM kinase II-(273-302), the current was no longer activated by rhTNF alpha. The intracellular application of the control peptide (10 microM), CaM kinase II-(284-302), or the protein kinase C (PKC) inhibitory, PKC-(19-36), or control, [Glu27]PKC-(19-36), peptide (5 microM) did not block the rhTNF alpha-induced Cl- current. These results show that Ca2+ changes are associated with the effects of rhTNF alpha and that CaM kinase plays a role in the mechanism underlying rhTNF alpha-induced activation of Ca(2+)-activated Cl- current in human neutrophils.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources