Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jan;27(1):11-23.
doi: 10.1002/jbm.820270104.

Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers

Affiliations
Comparative Study

Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers

L E Freed et al. J Biomed Mater Res. 1993 Jan.

Abstract

Cartilaginous implants for potential use in reconstructive or orthopedic surgery were created using chondrocytes grown on synthetic, biodegradable polymer scaffolds. Chondrocytes isolated from bovine or human articular or costal cartilage were cultured on fibrous polyglycolic acid (PGA) and porous poly(L)lactic acid (PLLA) and used in parallel in vitro and in vivo studies. Samples were taken at timed intervals for assessment of cell number and cartilage matrix (sulfated glycosaminoglycan [S-GAG], collagen). The chondrocytes secreted cartilage matrix to fill the void spaces in the polymer scaffolds that were simultaneously biodegrading. In vitro, chondrocytes grown on PGA for 6 weeks reached a cell density of 5.2 x 10(7) cells/g, which was 8.3-fold higher than at day 1, and equalled the cellularity of normal bovine articular cartilage. In vitro, the cell growth rate was approximately twice as high on PGA as it was on PLLA; cells grown on PGA produced S-GAG at a high steady rate, while cells grown on PLLA produced only minimal amounts of S-GAG. These differences could be attributed to polymer geometry and biodegradation rate. In vivo, chondrocytes grown on both PGA and PLLA for 1-6 months maintained the three-dimensional (3-D) shapes of the original polymer scaffolds, appeared glistening white macroscopically, contained S-GAG and type II collagen, and closely resembled cartilage histologically. These studies demonstrate the feasibility of culturing isolated chondrocytes on biodegradable polymer scaffolds to regenerate 3-D neocartilage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources