Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan;91(1):153-9.
doi: 10.1172/JCI116165.

Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms

Affiliations

Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms

R A Berkman et al. J Clin Invest. 1993 Jan.

Abstract

Expression of the vascular permeability factor/vascular endothelial growth factor (VEGPF) gene was investigated in human central nervous system (CNS) neoplasms and normal brain. Adsorption of capillary permeability activity from human glioblastoma multiforme (GBM) cell conditioned medium and GBM cyst fluids by anti-VEGPF antibodies demonstrated that VEGPF is secreted by GBM cells and is present in sufficient quantities in vivo to induce vascular permeability. Cloning and sequencing of polymerase chain reaction-amplified GBM and normal brain cDNA demonstrated three forms of the VEGPF coding region (567, 495, and 363 nucleotides), corresponding to mature polypeptides of 189, 165, and 121 amino acids, respectively. VEGPF mRNA levels in CNS tumors vs. normal brain were investigated by the RNase protection assay. Significant elevation of VEGPF gene expression was observed in 81% (22/27) of the highly vascular and edema-associated CNS neoplasms (6/8 GBM, 8/8 capillary hemangioblastomas, 6/7 meningiomas, and 2/4 cerebral metastases). In contrast, only 13% (2/15) of those CNS tumors that are not commonly associated with significant neovascularity or cerebral edema (2/10 pituitary adenomas and 0/5 nonastrocytic gliomas) had significantly increased levels of VEGPF mRNA. The relative abundance of the forms of VEGPF mRNA was consistent in tumor and normal brain: VEGPF495 > VEGPF363 > VEGPF567. In situ hybridization confirmed the presence of VEGPF mRNA in tumor cells and its increased abundance in capillary hemangioblastomas. Our results suggest a significant role for VEGPF in the development of CNS tumor neovascularity and peritumoral edema.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7311-5 - PubMed
    1. Biochem Biophys Res Commun. 1989 Jun 15;161(2):851-8 - PubMed
    1. EMBO J. 1989 Dec 1;8(12):3801-6 - PubMed
    1. J Biol Chem. 1989 Nov 25;264(33):20017-24 - PubMed
    1. Science. 1989 Dec 8;246(4935):1306-9 - PubMed

MeSH terms