Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan;69(1):290-2.
doi: 10.1152/jn.1993.69.1.290.

Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex

Affiliations

Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex

C Alzheimer et al. J Neurophysiol. 1993 Jan.

Abstract

1. Whole-cell recordings were performed on acutely isolated pyramidal neurons from rat sensorimotor cortex 2 to 21 days postnatal to study the expression of a tetrodotoxin (TTX) sensitive, voltage dependent, persistent Na+ current (INaP) during different stages of postnatal development. 2. INaP was activated positive to about -60 mV and attained its peak amplitude between -40 and -35 mV. Activation of INaP did not require preceding activation of the transient Na+ current. 3. Peak INaP amplitudes showed a three-fold increase over the first three postnatal weeks, starting from 60.7 +/- 7.5 (SE) pA (n = 6) at postnatal day (P) 2-P5 and reaching 189.1 +/- 20.4 pA (n = 13) at P17-P21. 4. Measurements of peak INaP density, which took concomitant cell growth into account, revealed that a considerable current density already existed in very young neurons (P2-P5: 4.3 +/- 1.0 microA/cm2, n = 6) when compared with INaP density in early adult neurons (P17 - P21: 8.9 +/- 0.8 microA/cm2, n = 5). 5. Our data provide the first direct evidence for the presence of a significant INaP density during early postnatal development of neocortical neurons indicating that this current should play a role in the control of intrinsic excitability at this age.

PubMed Disclaimer

Publication types

LinkOut - more resources