Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;84(2):145-50.
doi: 10.1042/cs0840145.

Progressive deterioration of muscles in mdx mice induced by overload

Affiliations

Progressive deterioration of muscles in mdx mice induced by overload

J Dick et al. Clin Sci (Lond). 1993 Feb.

Abstract

1. Extensor digitorum longus muscles of C57 BL/10 and mdx mice were overloaded by removing the synergist tibialis anterior muscle of 9-12-day-old animals. The effect of this operation on the weight, contractile properties and force of the extensor digitorum longus muscle was examined at two different ages, i.e. at 2-3 months (young group) and at 5-8 months (old group). The changes with age in both the control and overloaded muscles of normal and mdx mice are also described. The values obtained from the overloaded muscles were always compared with those for the control, unoperated extensor digitorum longus. 2. In the normal strain of mice the weight of the overloaded extensor digitorum longus muscle in the younger group was increased and it remained higher in the older animals. In the mdx mice the overloaded extensor digitorum longus muscles weighed more in the younger animals but not in the older group of mice. 3. The twitch and tetanic tensions of the overloaded muscles were slightly, but not significantly, increased in the younger group of mdx mice, whereas in the older animals there was a significant decrease in both twitch and tetanic tensions. 4. Thus the overloaded muscles from mdx mice progressively deteriorated with age. In both strains of mice the overloaded muscles become less fatigable with time.

PubMed Disclaimer

Publication types

LinkOut - more resources