Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Mar;104(3):916-25.
doi: 10.1016/0016-5085(93)91032-d.

Bacterial toxin interaction with the developing intestine

Affiliations
Review

Bacterial toxin interaction with the developing intestine

S H Chu et al. Gastroenterology. 1993 Mar.

Abstract

An important approach to the major health problem of bacterial infection in young children has been to examine bacterial toxin binding to microvillus membrane receptors, the signal transduction produced by that interaction and the mechanisms of fluid secretion in the developing intestine as a basis for toxigenic diarrhea in the infant population. These studies indicate that receptor binding and effector responses may be subjected to developmental regulation. This regulation process of toxin interaction with the developing intestine may have an enhanced or harmful effect or, under some circumstances, may have a beneficial effect and be protective to the vulnerable child. Specific mechanisms for the developmental control of receptor expression may involve the regulation of individual glycosyltransferases responsible for the addition of receptor sugar sequences to glycolipids and/or glycoproteins, presumably at the transcriptional level. Furthermore, although highly speculative at this point, the differential expression of signal transducers (e.g., guanine nucleotide-regulatory proteins or G proteins) and ion transporters (e.g., Na+,K(+)-stimulated adenosine triphosphatase, the Cl- channels, etc.) during development may also alter the neonatal host's responsiveness. Therefore, the developmental control of microvillus membrane receptors, signal transduction mechanisms, and ion transport systems in the gastro-intestinal tract may in part contribute to the altered host sensitivity in toxigenic diarrhea of infancy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources