Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 25;268(6):3850-6.

Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells

Affiliations
  • PMID: 8382679
Free article

Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells

F S Menniti et al. J Biol Chem. .
Free article

Abstract

There is little information concerning the intracellular function of inositol 1,3,4,5,6-pentakis- and hexakisphosphate, despite their being the most abundant inositol polyphosphates. Current opinions that they play passive roles as antioxidants (Graf, E., Mahoney, J. R., Bryant, R. G., and Eaton, J. W. (1987) J. Biol. Chem. 259, 3620-3624) or "housekeeping" molecules (Berridge, M. J., and Irvine, R. F. (1989) Nature 341, 197-205) arises from belief in their metabolic lethargy. However, we have discovered that cell homogenates, incubated with 5 mM fluoride and 5 mM ATP, converted both inositol hexakisphosphate (Km = 2 +/- 0.5 microM, Vmax = 9 +/- 2 pmol/mg of protein/min) and inositol 1,3,4,5,6-pentakisphosphate (Km = 13 +/- 4 microM, Vmax = 11 +/- 5 pmol/mg of protein/min) to more polar products. These reactions were also observed in intact cells treated with 0.5-20 mM fluoride, and the precursor/product relationships were confirmed by comparing the effects of fluoride on cells differentially labeled with [3H]inositol in either short-term or pulse-chase protocols. The novel products were determined to be inositol pyrophosphates because of their relatively specific hydrolysis by tobacco pyrophosphatase and alkaline phosphatase. The pyrophosphates were metabolized rapidly by cell homogenates back to their pentakisphosphate and hexakisphosphate precursors. This endogenous pyrophosphatase activity was inhibited by up to 99% by 5 mM fluoride in vitro. In intact cells incubated with 10 mM fluoride, about 20% of the inositol 1,3,4,5,6-pentakisphosphate pool, and 50% of the inositol hexakisphosphate pool were each converted to pyrophosphate derivatives within 1 h.

PubMed Disclaimer

LinkOut - more resources