Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 15;212(1):193-9.
doi: 10.1111/j.1432-1033.1993.tb17650.x.

Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis

Affiliations
Free article

Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis

I Zaror et al. Eur J Biochem. .
Free article

Erratum in

  • Eur J Biochem 1993 Jun 15;214(3):949

Abstract

The fructose-1,6-bisphosphatase [Fru(1,6)P2ase] gene of the budding yeast, Kluyveromyces lactis, was cloned and sequenced. The gene encodes one open reading frame predicting a 354-amino-acid polypeptide. The polypeptide is different from other Fru(1,6)P2ases in that it contains a short amino-acid-insert region close to a basic residue located at the binding site for the allosteric inhibitor AMP. Comparison of the biochemical properties of the K. lactis enzyme with its closest homolog, the Saccharomyces cerevisiae Fru(1,6)P2ase (74% amino acid identity), reveals that the K. lactis enzyme is significantly less sensitive to AMP (Ki = 540 microM) than the S. cerevisiae enzyme (Ki = 190 microM). However, studies with a K. lactis Fru(1,6)P2ase mutant, in which the insert region (amino acids 152-160) was deleted by site-directed mutagenesis [(des-152-160)Fru(1,6)P2ase], showed that the mutant enzyme had higher sensitivity to AMP inhibition (Ki = 280 microM) than the control K. lactis enzyme. Thus, the nine-amino-acid insert region appears to be responsible for the decreased AMP inhibition shown by the K. lactis wild-type enzyme. Catabolite-repression and catabolite-inactivation studies show that, unlike the complete repression of FBP1 mRNA and inactivation of enzyme activity by glucose seen in S. cerevisiae, mRNA levels and enzyme activity of K. lactis Fru(1,6)P2ase decreased only about 2-4-fold due to the presence of glucose in the cell-culture medium.

PubMed Disclaimer

Publication types

LinkOut - more resources