Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 15;268(11):7856-62.

An epithelial high-affinity amiloride-binding site, different from the Na+ channel

Affiliations
  • PMID: 8385123
Free article

An epithelial high-affinity amiloride-binding site, different from the Na+ channel

O Goldstein et al. J Biol Chem. .
Free article

Abstract

Specific binding of the radioactive amiloride analogues [3H]phenamil and [3H]benzamil was studied in plasma membrane from chicken lower intestine. A single population of sites whose affinities and specificities towards pyrazinecarboxamides roughly resemble those of the epithelial Na+ channel, was identified. However, a matched comparison of pyrazinecarboxamide binding and Na+ transport inhibition revealed substantial differences between the high-affinity [3H]phenamil-binding site detected, and the site whose occupancy by phenamil blocks Na+ transport. First, 5-(N-ethyl-N-isopropyl)-amiloride was found to displace bound [3H]phenamil at concentrations that are at least 10-fold lower than those needed to block the channel. Second, the rates at which [3H]phenamil associates and dissociates from this site are lower than the rates at which Na+ channels are inhibited and reactivated, under similar conditions. A site with high affinity to both amiloride and 5-(N-ethyl-N-isopropyl)-amiloride was detected also in membranes from other epithelia. We conclude that tight epithelia contain a major high-affinity amiloride receptor other than the Na(+)-conducting channel, the Na+/H+ antiport or the Na+/Ca2+ exchanger. This site could be associated with a pool of nonconducting channels, another (but structurally related) channel, or a totally unrelated protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources