Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 15;268(11):8070-7.

Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway

Affiliations
  • PMID: 8385135
Free article

Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway

J L Weiner et al. J Biol Chem. .
Free article

Abstract

In the yeast Saccharomyces cerevisiae, a G protein-linked signal transduction pathway mediates response to the oligopeptide mating pheromones a-factor and alpha-factor. Because cellular responses, including G1 arrest, occur transiently, cells can adapt or desensitize and resume growth. To address whether the balance between response and adaptation is influenced by the efficiency of receptor-G protein interaction, we introduced random point mutations in sequences that encode the third cytoplasmic loop of the alpha-factor receptor (STE2 gene product). Three mutations were identified that confer alpha-factor-resistant phenotypes, yet preserve normal cell-surface expression, ligand-binding affinity, and endocytosis of the receptor. However, these mutations confer partial signaling defects, as determined by cell cycle arrest and transcriptional induction assays, as well as in vitro assays of receptor-G protein interaction. Physiological tests suggested that receptors bearing third loop substitutions promote recovery from pheromone-induced growth arrest. Genetic evidence indicated that the third loop and the C-terminal domain of the receptor control independent recovery or adaptation processes. In contrast, receptor third loop substitutions caused rapid adaptation only if cells express a functional SST2 gene. Thus, disruption of pheromone receptor-G protein interaction concomitantly blunts signaling and specifically promotes the function of an SST2-dependent adaptation pathway. Possible functions for the Sst2 protein are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources