Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 2;260(5104):82-4.
doi: 10.1126/science.8385366.

Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes

Affiliations

Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes

A Tse et al. Science. .

Abstract

In pituitary gonadotropes, gonadotropin-releasing hormone (GnRH) induces the rhythmic release of Ca2+ from an inositol 1,4,5-trisphosphate (IP3)-sensitive store. Simultaneous measurement of the concentration of cytosolic free Ca2+ ([Ca2+]i) and exocytosis in single identified gonadotropes showed that each elevation of [Ca2+]i induced a burst of exocytosis. These phenomena were largely suppressed by buffering of [Ca2+]i but persisted in the absence of extracellular Ca2+. Activation of voltage-gated Ca2+ channels by brief depolarizations seldom supplied enough Ca2+ for exocytosis, but [Ca2+]i elevations induced by photolysis of caged IP3 did trigger exocytosis, confirming that GnRH-stimulated gonadotropic hormone secretion is closely coupled to intracellular Ca2+ release. Agonist-induced oscillations of [Ca2+]i in secretory cells may be a mechanism to optimize the secretory output while avoiding the toxic effects of sustained elevation of [Ca2+]i.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources