Unexpected antinociceptive potency of cyclic [D-Tca1]CTAP: potential for a novel mechanism of action
- PMID: 8386089
- DOI: 10.1016/0014-2999(93)90348-l
Unexpected antinociceptive potency of cyclic [D-Tca1]CTAP: potential for a novel mechanism of action
Abstract
This study tested the hypothesis that compounds which may bind simultaneously to delta and mu receptors may be more potent antinociceptive agents than would be predicted from their binding affinities at individual mu and delta opioid receptors. D-Tca-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 ([D-Tca1]CTAP) (where D-Tca is a cyclic D-tryptophan analogue) was synthesized and evaluated in radioligand competition assays, opioid bioassays, and in an antinociceptive assay (the tail-flick test in mice). Additionally, the metabolic stability of [D-Tca1]CTAP was evaluated in striatal and cerebellar tissue slices. In rat brain in vitro, [D-Tca1]CTAP competed weakly for sites labelled by [3H]D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 ([3H]CTOP) (mu-ligand), and [3H][D-Pen2,pCl-Phe4,D-Pen5]enkephalin (delta-ligand); [D-Pen2,D-Pen5]enkephalin (DPDPE) (delta-agonist) was 6.5-fold less and 230-fold more potent, respectively, against these ligands. Additionally, in mouse isolated vas deferens and guinea pig isolated ileum smooth muscle preparations, [D-Tca1]CTAP proved to be weak as either a delta (IC50 of approximately 2 microM) or mu (IC50 > 8 microM) receptor agonist. Surprisingly, however, i.c.v. [D-Tca1]CTAP produced antinociception with potency similar to DPDPE. The antinociceptive actions of [D-Tca1]CTAP were apparently not due to a metabolite or the release of endogenous opioids, as this compound proved stable in both striatal and cerebellar tissue slices and its antinociceptive actions were not enhanced by the 'enkephalinase' inhibitor thiorphan. The suggestion that [D-Tca1]CTAP might be acting by binding simultaneously to mu and delta receptors to produce its antinociceptive effect is supported by the demonstrated antagonism resulting from mu receptor blockade with either beta-funaltrexamine (beta-FNA) or naloxonazine, or by delta receptor blockade by ICI 174,864 ([N,N-diallyl-Tyr1,Aib2,3,Leu5] enkephalin). Furthermore, the antinociceptive properties of [D-Tca1]CTAP were antagonized by (naltrindole-5'-isothiocyanate) (5'-NTII), an antagonist at the delta 2 opioid receptor subtype, but not by the delta 1 antagonist [D-Ala2,D-Leu5,Cys6]enkephalin (DALCE). Additionally, no antagonism was produced by nor-binaltorphimine (nor-BNI), a kappa antagonist. From these data, [D-Tca1]CTAP appears to bind to mu, and 5'-NTII-sensitive delta 2, opioid receptors, and may represent the first of a class of compounds which may act at an opioid receptor complex via 'self-potentiation'.
Similar articles
-
Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord.J Pharmacol Exp Ther. 1998 Jun;285(3):1181-6. J Pharmacol Exp Ther. 1998. PMID: 9618421
-
The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons.Mol Pharmacol. 1996 Sep;50(3):650-5. Mol Pharmacol. 1996. PMID: 8794906
-
Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay.J Pharmacol Exp Ther. 2003 Jan;304(1):301-9. doi: 10.1124/jpet.102.042093. J Pharmacol Exp Ther. 2003. PMID: 12490605
-
The antinociceptive properties of endomorphin-1 and endomorphin-2 in the mouse.Jpn J Pharmacol. 2002 Jul;89(3):216-20. doi: 10.1254/jjp.89.216. Jpn J Pharmacol. 2002. PMID: 12184724 Review.
-
Novel approaches in the development of new analgesics.Neurophysiol Clin. 1990 Nov;20(5):369-87. doi: 10.1016/s0987-7053(05)80205-9. Neurophysiol Clin. 1990. PMID: 1965453 Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials