Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;264(4 Pt 1):C1037-44.
doi: 10.1152/ajpcell.1993.264.4.C1037.

Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells

Affiliations

Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells

K Naruse et al. Am J Physiol. 1993 Apr.

Abstract

Endothelial cells are subjected to shear stresses by blood flow, normal stresses by blood pressure, and stretch by vessel expansion. These forces are known to induce secretions of several vasoactive substances probably via internal calcium mobilization (R. F. Furchgott. Circ. Res. 53: 557-573, 1983; M. J. Peach, A. L. Loeb, H. A. Singer, and J. Saye. Hypertension Dallas 7, Suppl. I: I-94-I-100, 1985). Here we report that stretching cellular membranes increased intracellular Ca2+ concentration ([Ca2+]i) in human umbilical endothelial cells cultured on silicon membranes. Upon application of a stretch pulse (3-s duration), [Ca2+]i increased rapidly and decayed slowly. The following results suggest that this increase arises from Ca2+ entry through stretch-activated (SA) channels: 1) the Ca2+ response disappeared when extracellular Ca2+ was removed; 2) gadolinium (Gd3+), a blocker for cation-selective SA channels, blocked the response but nifedipine did not; and 3) externally applied Mn2+, which is known to permeate mechanosensitive channels but not Ca2+ channels, entered the intracellular space immediately after an application of mechanical stretch. The increase in [Ca2+]i was found to consist of at least two components: an initial fast component and a delayed slower component. Ryanodine inhibited the slow component. It is suggested that stretching the membrane primarily induced extracellular Ca2+ entry through SA channels followed by Ca2+ releases from intracellular Ca2+ stores.

PubMed Disclaimer

Publication types

LinkOut - more resources