Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;264(4 Pt 1):C961-7.
doi: 10.1152/ajpcell.1993.264.4.C961.

Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes

Affiliations

Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes

T L Dawson et al. Am J Physiol. 1993 Apr.

Abstract

Cell killing, oxygen consumption, and hydroperoxide formation were determined in rat hepatocytes after glycolytic and respiratory inhibition. These conditions model the ATP depletion and reductive stress of anoxia ("chemical hypoxia"). Glycolysis was inhibited with iodoacetate, and mitochondrial electron transfer was blocked with sodium azide, cyanide, or myxothiazol. Cell killing, hydroperoxide formation, and inhibitor-insensitive oxygen consumption were greater after azide than after myxothiazol or cyanide. Desferrioxamine, an inhibitor of iron-catalyzed hydroxyl radical formation, delayed cell killing after each of the respiratory inhibitors. Anoxia also delayed cell killing during chemical hypoxia. However, during anoxic incubations, desferrioxamine did not delay the onset of cell death. These findings indicate that reactive oxygen species participate in lethal cell injury during chemical hypoxia. In isolated mitochondria, previous studies have shown that myxothiazol inhibits Q cycle-mediated ubisemiquinone formation in complex III (ubiquinol-cytochrome c oxidoreductase) and that ubisemiquinone can react with molecular oxygen to form superoxide. Decreased killing of hepatocytes with myxothiazol compared with azide suggests, therefore, that mitochondrial oxygen radical formation by complex III is involved in cell killing during reductive stress. In support of this hypothesis, myxothiazol reduced rates of cell killing and hydroperoxide formation in hepatocytes incubated with azide or cyanide. This mitochondrial mechanism for oxygen radical formation may be important in relative but not absolute hypoxia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources