Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Feb;129(2):732-9.
doi: 10.1128/jb.129.2.732-739.1977.

H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells

H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells

P Hillmer et al. J Bacteriol. 1977 Feb.

Abstract

Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1977 Feb;129(2):724-31 - PubMed
    1. Nature. 1975 Dec 18;258(5536):630-1 - PubMed
    1. Z Naturforsch B. 1969 Jan;24(1):67-76 - PubMed
    1. Arch Mikrobiol. 1971;75(2):110-20 - PubMed
    1. J Bacteriol. 1975 Nov;124(2):613-22 - PubMed

Publication types

LinkOut - more resources