Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar-Apr;27(2):335-41.

[Contribution of 3'---5'-exonuclease from rat liver nuclei in precision of DNA synthesis, catalyzed by mammalian DNA polymerase alpha]

[Article in Russian]
  • PMID: 8387631

[Contribution of 3'---5'-exonuclease from rat liver nuclei in precision of DNA synthesis, catalyzed by mammalian DNA polymerase alpha]

[Article in Russian]
I V Shevelev et al. Mol Biol (Mosk). 1993 Mar-Apr.

Abstract

Mammalian nuclear DNA polymerases alpha and beta are known to be devoid of editing 3'-->5'exonucleolytic activity. Presumably this activity could be effected by the exonucleases non-associated covalently with DNA polymerases. Two 3'-->5'exonucleases with molecular masses of 40 and 50 kDa have been isolated from rat liver nuclei and purified to near homogeneity. They are shown to excise mismatched nucleotides from a poly [d(A-T)] template respectively 10- and 2-fold faster than the matched ones. Upon addition of any of these exonucleases to DNA polymerase alpha from rat liver or calf thymus, the fidelity of in vitro reproduction of primed DNA from bacteriophage phi X174 amber 3 is increased 5-10-fold, the levels of exonuclease and polymerase activities being approximately the same. The extrapolation of replication fidelity to cellular activities of the exonucleases and alpha-polymerase suggests that exonuclease proofreading augments the accuracy of DNA synthesis at least by three orders of magnitude.

PubMed Disclaimer

Similar articles