Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;7(7B):1411-22.
doi: 10.1101/gad.7.7b.1411.

Determinants for selective RAR and TR recognition of direct repeat HREs

Affiliations
Free article

Determinants for selective RAR and TR recognition of direct repeat HREs

T Perlmann et al. Genes Dev. 1993 Jul.
Free article

Abstract

Recently, we have shown that receptors for vitamin D3 (VDR), thyroid hormone (TR), and retinoic acid (RAR) activate preferentially through direct repeats (DRs) spaced by 3, 4, and 5 nucleotides, respectively. In addition, the RAR can activate weakly through DRs spaced by 2 nucleotides. A common feature of RAR, TR, and VDR is their ability to heterodimerize with the retinoid X receptor (RXR) through their ligand-binding domains (LBDs) to form high-affinity DNA-binding complexes that are specific for appropriately spaced repeats. In this paper we demonstrate that selective binding of RAR-RXR and TR-RXR heterodimers to their cognate DRs is a consequence of a novel cooperative dimer interaction within the DNA-binding domains (DBDs). Accordingly, a region in the first zinc finger of the TR and RAR DBDs interacts with the second zinc finger in the RXR DBD to promote selective DNA-binding to DRs spaced by 4 and 5 nucleotides, respectively. The resulting polarity established by this interaction places RXR in the 5' position of the direct repeats. These data provide a mechanism for selective receptor recognition of a restricted set of target sequences in DR DNA and explains the structural basis for physiological specificity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources