Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug;22(2):204-13.
doi: 10.1161/01.hyp.22.2.204.

Red blood cell sodium-proton exchange in hypertensive blacks with insulin-resistant glucose disposal

Affiliations

Red blood cell sodium-proton exchange in hypertensive blacks with insulin-resistant glucose disposal

M Canessa et al. Hypertension. 1993 Aug.

Abstract

To define the potential pathogenic role of hyperinsulinemia as a mediator of alterations in sodium transport, we have examined red blood cell Na(+)-H+ and Na(+)-Li+ exchanges in a young adult black population characterized for blood pressure and insulin-mediated glucose disposal. Normotensive and mildly hypertensive blacks (blood pressure, 120 +/- 2/76 +/- 2 and 139 +/- 3/94 +/- 2 mm Hg, respectively) with a mean age of 26.1 years were studied for insulin sensitivity with the euglycemic hyperinsulinemic clamp (molar index of insulin sensitivity, M/I = moles glucose metabolized/insulin in milliliters of plasma). Na(+)-H+ exchange (U = mmol/L cell.h) was measured before and after the insulin clamp as a function of cell pH to determine the maximum transport rate. In the normotensive subjects, 18 were insulin sensitive (M/I = 9.37 +/- 0.6 x 10(4)) and 4 were insulin resistant (M/I = 3.64 +/- 0.6 x 10(4)). In the hypertensive subjects, 4 were insulin sensitive (M/I = 9.15 +/- 1.1 x 10(4)) and 16 were insulin resistant (M/I = 3.02 +/- 0.3 x 10(4)). The maximum rate of Na(+)-H+ exchange was significantly higher in all hypertensive vs normotensive individuals (35 +/- 3 vs 23 +/- 3 U, P < .005). Na(+)-H+ exchange activity was higher in insulin-resistant vs insulin-sensitive hypertensive subjects (40 +/- 3 vs 20 +/- 2 U, P < .001) but not in insulin-resistant normotensive subjects. Na(+)-Li+ exchange was not different in hypertensive and normotensive individuals but was higher in all insulin-resistant compared with all insulin-sensitive subjects (0.26 +/- 0.03 vs 0.16 +/- 0.02 U, P < .01). Na(+)-Li+ exchange also was higher in insulin-resistant vs insulin-sensitive normotensive subjects (0.35 +/- 0.03 vs 0.15 +/- 0.02 U, P < .001) and in insulin-resistant hypertensive subjects vs insulin-sensitive normotensive subjects (0.24 +/- 0.03 vs 0.15 +/- 0.02 U, P < .001). A stepwise multiple regression analysis for all variables revealed that with Na(+)-H+ exchange as a dependent variable the main determinant was blood pressure, which in turn had insulin sensitivity as the main determinant. In conclusion, these results indicate that in hypertensive blacks, insulin-resistant glucose disposal is strongly associated with elevated red blood cell Na(+)-H+ exchange activity. Thus, despite impaired insulin-mediated glucose disposal, cellular Na+ gain via enhanced activity of Na(+)-H+ exchange is not blunted in hypertensive blacks.

PubMed Disclaimer

Publication types

LinkOut - more resources