Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 5;268(22):16495-503.

Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95

Affiliations
  • PMID: 8393867
Free article

Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95

Y J Buechler et al. J Biol Chem. .
Free article

Abstract

The type I alpha regulatory subunits of cAMP-dependent protein kinase contain an autoinhibitor site, Arg94-Arg-Gly-Ala-Ile, which serves as a pseudosubstrate. To evaluate their contribution to subunit association, Arg94 and Arg95, key determinants for peptide recognition, were replaced singly and in tandem with Ala, Glu, and His. Unlike substrate peptides in which replacement of either arginine leads to an increase in Km of approximately 3 orders of magnitude, replacement of either arginine causes only a maximal 20-fold decrease in subunit association. Replacement of both arginine residues with alanine, however, generates a regulatory subunit that can no longer recombine with the catalytic subunit under physiological conditions when the regulatory subunit is saturated with cAMP. To evaluate more fully the specific consequences of replacing these 2 arginine residues, a rapid gel filtration chromatographic method was developed so that subunit affinity could be measured independently of assaying for catalytic activity. The R94,95A mutant shows a Kd(app) = 677 nM, representing an increase of greater than 3 orders of magnitude compared with the native subunits in the presence of MgATP. In the absence of MgATP, the Kd(app) for native regulatory subunit was 125 nM, whereas the Kd(app) for the R94,R95A mutant regulatory subunit was determined to 2.87 microM. When this mutant holoenzyme is assayed at microM concentrations, no activity is observed, whereas below microM, activity is observed because of cAMP-independent subunit dissociation.

PubMed Disclaimer

Publication types

LinkOut - more resources