Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 27;74(4):669-77.
doi: 10.1016/0092-8674(93)90514-q.

Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas

Affiliations

Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas

H Kasai et al. Cell. .

Abstract

Agonists trigger Ca2+ waves and oscillations in exocrine gland cells. Our confocal Ca2+ imaging revealed three distinct phases during the Ca2+ waves in the rat pancreatic acinar cell. Rises in Ca2+ concentration were initiated at a small trigger zone, or T zone, in the granular area; then, Ca2+ waves rapidly spread within the area and, at high agonist concentrations, propagated slowly toward the basal pole. Injection of inositol 1,4,5-trisphosphate (IP3) or Ca2+ from patch pipettes demonstrated the presence of high sensitivity IP3 receptors at the T zone, Ca(2+)-induced Ca2+ release channels in the granular area, and low sensitivity IP3 receptors in the basal area. The IP3 receptors at the T zone appeared to generate autonomous Ca2+ spikes and to initiate patterned Ca2+ oscillations. Thus, heterogeneous cytosolic localization of Ca2+ release channels plays a key role in Ca2+ waves and oscillations.

PubMed Disclaimer

Publication types

LinkOut - more resources