Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct 12;32(40):10757-62.
doi: 10.1021/bi00091a029.

Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III

Affiliations

Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III

D N Silverman et al. Biochemistry. .

Abstract

Maximal turnover rates for the dehydration of HCO3- catalyzed by the zinc metalloenzyme carbonic anhydrase III are limited by a proton transfer to zinc-bound hydroxide in the active site. We have used site-directed mutagenesis to place a proton donor, histidine, at position 64 and used 18O exchange between CO2 and water measured by mass spectrometry to determine the rates of intramolecular proton transfer to the zinc-bound hydroxide. In a series of site-specific mutants, the values of pKa of the zinc-bound water ranged from approximately 5 to 9. The rate constants for proton transfer obeyed a Brønsted correlation and showed sharp curvature characteristic of facile proton transfers. Application of Marcus rate theory shows that this proton transfer has the small intrinsic energy barrier (near 1.5 kcal/mol) characteristic of rapid proton transfer between nitrogen and oxygen acids and bases, but has an observed overall energy barrier (near 10 kcal/mol), indicating the involvement of accompanying, energy requiring processes such as solvent reorganization or conformational change.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources