Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993:13 Suppl 2:S35-8.

A three-pore model of peritoneal transport

Affiliations
  • PMID: 8399608

A three-pore model of peritoneal transport

B Rippe. Perit Dial Int. 1993.

Abstract

The three-pore model of peritoneal transport treats the capillary membrane as a primary barrier determining the amount of solute that transports to the interstitium and the peritoneal cavity. According to the three-pore model, the principal peritoneal exchange route for water and water-soluble substances is a protein-restrictive pore pathway of radius 40-55 A, accounting for approximately 99% of the total exchange (pore) area and approximately 90% of the total peritoneal ultrafiltration (UF) coefficient (LpS). For their passage through the peritoneal membrane proteins are confined to so-called "large pores" of radius approximately 250 A, which are extremely few in number (0.01% of the total pore population) and more or less nonrestrictive with respect to protein transport. The third pathway of the three-pore model accounts for only about 2% of the total LpS and is permeable to water but impermeable to solutes, a so-called "water-only" (transcellular?) pathway. In contrast to the classical Pyle-Popovich (P&P) model, the three-pore model can predict with reasonable accuracy not only the transport of water and "small solutes" (molecular radius 2.3-15 A) and "intermediate-size" solutes (radius 15-36 A), but also the transport of albumin (radius 36 A) and larger molecules across the peritoneal membrane. The model operates with reflection coefficients(a) (sigma's) for small solutes < 0.1. These are approximately one order of magnitude lower than the sigma's in the P&P model. Furthermore, the peritoneal LpS is one order of magnitude higher than in the P&P model.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types