Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993;25(4):309-16.
doi: 10.1002/cm.970250402.

Recent quantitative studies of actin filament turnover during cell locomotion

Affiliations
Review

Recent quantitative studies of actin filament turnover during cell locomotion

S H Zigmond. Cell Motil Cytoskeleton. 1993.

Abstract

Cell locomotion depends on polymerization and depolymerization of filamentous actin. Net polymerization at the cell front occurs fast enough to fill the extending lamellipod, and since total F-actin is essentially constant over time, depolymerization must equal polymerization. Indeed, the fastest moving cell types have the highest rates of depolymerization. Accounting for the high rate of depolymerization raises several problems. One is that net depolymerization requires the concentration of G-actin to be low (below the critical concentration), but rapid polymerization (occurring < 1 micron away) requires the concentration of G-actin to be high (well above the critical concentration). This may be accomplished by spatial compartmentalization of factors that favor polymerization or depolymerization, and/or by proteins that bind G-actin and prevent spontaneous polymerization while allowing barbed-end elongation. A second problem is that depolymerization proceeds faster than would seem possible from studies of F-actin in vitro (as calculated from number and lengths of filaments present and in vitro rate constants). Rapid depolymerization may be accomplished by filament cutters or by cytoplasmic components (as yet undiscovered) that increase the rate of depolymerization.

PubMed Disclaimer

Publication types

LinkOut - more resources