Effects of nickel ions on polymerase activity and fidelity during DNA replication in vitro
- PMID: 8403077
- DOI: 10.1016/0009-2797(93)90089-h
Effects of nickel ions on polymerase activity and fidelity during DNA replication in vitro
Abstract
Nickel is a genotoxic carcinogen. However, the mechanisms of nickel-induced genotoxicity are not well understood. We have investigated the effects of Ni2+ ions on DNA polymerase activity and the fidelity of DNA replication in vitro. The effect of Ni2+ on different DNA polymerases is quite variable. The amount of enzyme inhibition and degree of alteration in replication fidelity induced by Ni2+ are dependent both on the polymerase and its associated 3'-5' exonuclease activity. Some polymerases, such as E. coli DNA polymerase I, AMV reverse transcriptase and human DNA polymerase alpha, can utilize Ni2+ as a weak substitute for Mg2+ during DNA replication. Other polymerases are very sensitive to inhibition by Ni2+ and the IC50 can vary by an order of magnitude. T4 polymerase is relatively insensitive to inhibition by Ni2+, although the sensitivity is enhanced in the absence of added Mg2+, and Ni preferentially inhibits the 3'-5' exonuclease function of T7 DNA polymerase. The fidelity and processivity of DNA polymerases may be either increased or decreased by Ni ions in a polymerase dependent manner. The inhibition DNA polymerase activity and altered replication fidelity may contribute significantly to Ni-induced mutagenesis and genotoxicity in vivo.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
