Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Oct 15;90(20):9538-41.
doi: 10.1073/pnas.90.20.9538.

An accuracy center in the ribosome conserved over 2 billion years

Affiliations
Comparative Study

An accuracy center in the ribosome conserved over 2 billion years

L E Alksne et al. Proc Natl Acad Sci U S A. .

Abstract

The accuracy of translation in Escherichia coli is profoundly influenced by three interacting ribosomal proteins, S12, S4, and S5. Mutations at lysine-42 of S12, originally isolated as causing resistance to streptomycin, increase accuracy. Countervailing "ribosomal ambiguity mutations" (ram) in S4 or S5 decrease accuracy. In the eukaryotic ribosome of Saccharomyces cerevisiae, mutations in SUP46 and SUP44, encoding the proteins equivalent to S4 and S5, lead to omnipotent suppression--i.e., to less accurate translation. The evolution of ribosomal protein S12 can be traced, by comparison with archaebacteria and Tetrahymena, to S28 of S. cerevisiae, even though the two proteins share only very limited regions of homology. However, one region that has been conserved contains a lysine residue whose mutation leads to increased accuracy in E. coli. We have introduced into S28 of yeast the same amino acid substitutions that led to the original streptomycin-resistant mutations in E. coli. We find that they have a profound effect on the accuracy of translation and interact with SUP44 and SUP46, just as predicted from the E. coli model. Thus, the interplay of these three proteins to provide the optimal level of accuracy of translation has been conserved during the 2 billion years of evolution that separate E. coli from S. cerevisiae.

PubMed Disclaimer

References

    1. Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 - PubMed
    1. Biochimie. 1987 Sep;69(9):939-48 - PubMed
    1. J Mol Biol. 1989 Aug 5;208(3):457-68 - PubMed
    1. Genetics. 1990 Mar;124(3):515-22 - PubMed
    1. Mol Cell Biol. 1990 Dec;10(12):6544-53 - PubMed

Publication types