Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jan 14;361(6408):168-70.
doi: 10.1038/361168a0.

Chemomechanical cycle of kinesin differs from that of myosin

Affiliations
Comparative Study

Chemomechanical cycle of kinesin differs from that of myosin

L Romberg et al. Nature. .

Abstract

Motor proteins move unidirectionally along cytoskeletal polymers by coupling translocation to cycles of ATP hydrolysis. The energy from ATP is required both to generate force and to dissociate the motor-filament complex in order to begin a new chemomechanical cycle. For myosin, force production is associated with phosphate release following ATP hydrolysis, whereas dissociation of actomyosin is tightly coupled to the binding of ATP. Dynein, a microtubule motor, uses a similar cycle, suggesting that all cytoskeletal motors might operate by a common mechanism. Here we investigate kinesin's chemomechanical cycle by assaying microtubule movement by single kinesin molecules when intermediate states in the hydrolysis cycle are prolonged with ATP analogues or inhibitors. In contrast to myosin and dynein, kinesin with bound ADP dissociates from microtubules during translocation, whereas kinesin with unhydrolysed nucleotide remains tightly associated with the polymer. These findings imply that kinesin converts ATP energy into mechanical work by a pathway distinct from that of myosin or dynein.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources