Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan 15;190(1):263-9.
doi: 10.1006/bbrc.1993.1040.

Protein kinase C inhibits the Ca(2+)-activated K+ channel of cultured porcine coronary artery smooth muscle cells

Affiliations

Protein kinase C inhibits the Ca(2+)-activated K+ channel of cultured porcine coronary artery smooth muscle cells

K Minami et al. Biochem Biophys Res Commun. .

Abstract

The effect of protein kinase C (C-kinase) on the Ca(2+)-activated K+ channel (KCa-channel) was studied in cultured smooth muscle cells from porcine coronary artery by the patch-clamp technique. In cell-attached patches, bath application of phorbol 12-myristate 13-acetate (PMA, 1 microM), a C-kinase activator, significantly decreased the open probability of the activated KCa-channel in the presence of the calcium ionophore A23187 (20 microM), which increases intracellular Ca2+. This decrease in the open probability was reversed by subsequent application of staurosporine (1 nM), a C-kinase inhibitor. Application of 1-oleoyl-2-acetylglycerol (OAG, 30 microM) or 1,2-dioctanoylglycerol (DG8; 30 microM), activators of C-kinase, also inhibited KCa-channel activation by A23187, and these inhibitions were also reversed by staurosporine. PMA (1 microM) also inhibited KCa-channel activation by dibutylyl cyclic AMP (db-cAMP, 2 mM) or caffeine (30 mM). In inside-out patches, bath application of the C-kinase fraction from rat brain in the presence of ATP (1 mM) and PMA (1 microM) markedly inhibited the KCa-channel. These results indicate that activation of C-kinase inhibits the KCa-channel and may cause membrane depolarization and vascular contraction.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources