Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jan 18;1145(1):15-24.
doi: 10.1016/0005-2736(93)90376-b.

Mutual interaction of ion uptake and membrane potential

Affiliations
Comparative Study

Mutual interaction of ion uptake and membrane potential

G W Borst-Pauwels. Biochim Biophys Acta. .

Abstract

The concentration dependence of cation uptake by the cell may be considerably complicated when this uptake is accompanied by a depolarization of the cell membrane. In case of carrier-mediated transport deviations from Michaelis-Menten kinetics may come to the fore comparable to those found in a dual mechanism of cation uptake or when substrate inhibition is involved. This remains true when only the maximum rate of uptake and not the Km is dependent upon the membrane potential. We have proven this by means of computer simulation of cation transport mediated by a non-mobile carrier. Under restricted conditions still apparent Michaelis-Menten kinetics may be found despite the fact that the membrane potential varies with increasing substrate cation concentration. But even then there are still differences with 'normal' transport kinetics. A non-competitive inhibitor does not only affect the maximum rate of uptake but also the apparent Km. Depolarization of the cells by a cation which passes the cell membrane by means of diffusion, affects the uptake of the substrate cation almost in the same way as a non-competitive inhibitor does and causes both a decrease in the maximum rate of uptake and an increase in Km. In the case of competitive inhibition the apparent affinity of the inhibitor for the carrier depends upon the rate of transfer of this inhibitor through the cell membrane. The mutual influence of cation uptake and membrane potential is dealt with for uniport of either monovalent or divalent cations and for cotransport of monovalent cation with protons, as well. Possible effects of the surface potential are accounted for.

PubMed Disclaimer

Publication types

LinkOut - more resources