Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 1;150(3):736-47.

IFN-alpha induces homotypic adhesion and Leu-13 expression in human B lymphoid cells

Affiliations
  • PMID: 8423337

IFN-alpha induces homotypic adhesion and Leu-13 expression in human B lymphoid cells

S S Evans et al. J Immunol. .

Abstract

IFN-alpha influences the recirculation and growth of normal and malignant B lymphocytes, although the mechanisms involved are not currently known. Lymphocyte recirculation is fundamentally dependent on cell-to-cell interactions that are mediated by cell surface adhesion molecules. In this report, we examined the relationship between the effect of IFN-alpha on cell-to-cell adhesion processes and induction of the Leu-13 cell surface protein in established human Daudi B lymphoid cell lines that are either sensitive or resistant to the antiproliferative activity of IFN-alpha. IFN-alpha directly triggered homotypic adhesion of IFN-sensitive Daudi B cells in a time- and dose-dependent manner. In contrast, IFN-alpha had no effect on the cell-to-cell adhesion of IFN-resistant Daudi B cells. The capacity of IFN-alpha to trigger homotypic aggregation correlated directly with the level of induction of the cell surface protein Leu-13 and could be potentiated by anti-Leu-13 mAb. Other cytokines also known to influence the proliferation, differentiation, or recirculation of B lymphocytes such as IFN-gamma, IL-2, IL-4, IL-6, TNF-alpha, and low molecular weight B cell growth factor did not induce either Leu-13 expression or homotypic aggregation of Daudi B cells. The adhesion pathway triggered by the IFN-inducible protein Leu-13 required metabolic energy and an intact cytoskeleton but was not dependent on: 1) new protein synthesis; 2) protein kinase C, protein kinase A, or tyrosine kinase activities; or 3) the function of known adhesion molecules including LFA-1, ICAM-1, CD44, or VLA-4. Taken together, these studies demonstrate a fundamental role for IFN-alpha and the IFN-inducible protein Leu-13 in regulating a novel homotypic adhesion pathway in B lymphocytes, and provide insight into the possible mechanisms by which IFN-alpha regulates biologic processes including recirculation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources