Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan 23;1171(3):239-46.
doi: 10.1016/0167-4781(93)90061-h.

Developmental expression of chicken antithrombin III is regulated by increased RNA abundance and intracellular processing

Affiliations

Developmental expression of chicken antithrombin III is regulated by increased RNA abundance and intracellular processing

D L Amrani et al. Biochim Biophys Acta. .

Abstract

We isolated and sequenced a 432 bp cDNA to cAT-III, that encoded 115 nucleotides of 5' untranslated sequence, a 17 amino acid long signal peptide and residues 1-88 of the mature protein, and used it to prepare a probe for measuring and correlating the developmental changes of steady-state cAT-III mRNA levels with known changes in antigen levels. Densitometric analysis of nuclease protection (n = 2), Northern blot (n = 4), and slot blots (n = 3) of total RNA from chick livers of 16-day-old embryos to 6-day-old chicks showed a 2.6 +/- 0.5-fold increase in steady-state cAT-III mRNA levels. Assay of functional mRNA levels by in vitro translation of poly(A)+ RNA and specific immunoprecipitation of 35S-Met-labelled cAT-III was comparable to RNA analysis (16-day-old embryos vs. 10-day-old hatchlings). We evaluated whether there were developmental differences in post-translational secretion which may also contribute to the regulation of the circulating level of this protein. Pulse-chase studies of freshly-isolated hepatocytes from 16-day-old embryos and 10-day-old hatchlings maintained in suspension demonstrated a approx. 5.0-5.5-fold increase in cAT-III levels at steady-state secretion. The above findings indicate that changes in circulating cAT-III levels during late embryonic development are primarily due to increased abundance of cAT-III mRNA. In addition, we postulate that post-translational intracellular processing may account for further differences in circulating protein levels.

PubMed Disclaimer

Publication types

LinkOut - more resources