Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jan 29;72(2):211-22.
doi: 10.1016/0092-8674(93)90661-9.

Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity

Affiliations
Comparative Study

Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity

D E Ayer et al. Cell. .

Abstract

Myc family proteins appear to function through heterodimerization with the stable, constitutively expressed bHLH-Zip protein, Max. To determine whether Max mediates the function of regulatory proteins other than Myc, we screened a lambda gt11 expression library with radiolabeled Max protein. One cDNA identified encodes a new member of the bHLH-Zip protein family, Mad. Human Mad protein homodimerizes poorly but binds Max in vitro, forming a sequence-specific DNA binding complex with properties very similar to those of Myc-Max. Both Myc-Max and Mad-Max heterocomplexes are favored over Max homodimers, and, unlike Max homodimers, the DNA binding activity of the heterodimers is unaffected by CKII phosphorylation. Mad does not associate with Myc or with representative bHLH, bZip, or bHLH-Zip proteins. In vivo transactivation assays suggest that Myc-Max and Mad-Max complexes have opposing functions in transcription and that Max plays a central role in this network of transcription factors.

PubMed Disclaimer

Publication types

MeSH terms