Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 15;317(3):267-70.
doi: 10.1016/0014-5793(93)81290-g.

ATP-driven Na+ transport and Na(+)-dependent ATP synthesis in Escherichia coli grown at low delta mu H+

Affiliations
Free article

ATP-driven Na+ transport and Na(+)-dependent ATP synthesis in Escherichia coli grown at low delta mu H+

A V Avetisyan et al. FEBS Lett. .
Free article

Abstract

In inverted subcellular vesicles of Escherichia coli grown at high delta mu H+ (neutral pH, no protonophorous uncoupler), ATP-driven Na+ transport and oxidative phosphorylation are completely inhibited by the protonophore CCCP. If E. coli was grown at low delta mu H+, i.e. at high pH or in the presence of uncoupler, some oxidative phosphorylation was observed in the vesicles even in CCCP-containing medium, and Na+ transport was actually stimulated by CCCP. The CCCP-resistant transport and phosphorylation were absent from the unc mutant lacking F0F1 ATPase. Both processes proved to be sensitive to (i) the Na+/H+ antiporter monensin, (ii) the Na+ uniporter ETH 157, (iii) the F0 inhibitors DCCD and venturicidin, and (iv) the F1 inhibitor aurovertin. The CCCP-resistant oxidative phosphorylation was stimulated by Na+ and arrested by oppositely directed delta pNa. These data are consistent with the assumption that, under appropriate growth conditions, the F0F1-type ATPase of E. coli becomes competent in transporting Na+ ions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources