Physicochemical effects of acidosis on bone calcium flux and surface ion composition
- PMID: 8427052
- DOI: 10.1002/jbmr.5650080112
Physicochemical effects of acidosis on bone calcium flux and surface ion composition
Abstract
Net calcium flux (JCa) from bone in vitro is pH dependent. When pH falls below 7.40, through a reduction in [HCO3-], there is both physicochemical and cell-mediated JCa. To characterize the physicochemical effect of acidosis on bone we inhibited the bone-resorbing cells (osteoclasts) with the specific inhibitor calcitonin and studied the effect of acidosis on JCa and bone ion composition using an analytic high-resolution scanning ion microprobe. Neonatal mouse calvariae were cultured for 48 h in physiologically neutral pH medium (Ntl, pH = 7.41, [HCO3-] = 25 nM) or in medium that modeled metabolic acidosis (Met, pH = 7.10, [HCO3-] = 12), each with or without calcitonin (CT, 3 x 10(-9) M). There was net calcium efflux in Ntl (JCa = 631 +/- 36 nmol per bone per 48 h), which increased in Met (1019 +/- 53, p < 0.01); CT inhibited JCa in Ntl (-54 +/- 11, p < 0.01 versus Ntl), which increased in Met (197 +/- 15, p < 0.01 versus Ntl + CT). In the presence of CT the increase in JCa in Met versus Ntl represents physiochemical bone dissolution. The Ntl bone surface (approximately 2 nm in depth) was rich in Na compared to Ca (Na/Ca = 11.9, count/s of detected secondary ions), which fell in Met (Na/Ca = 6.0, p < 0.05); CT caused a further reduction of Na/Ca (3.1, p < 0.01 versus Ntl and versus Met), which was not altered in Met (2.6, p < 0.05 versus Ntl + CT).(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
