Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;22(2):155-63.
doi: 10.1016/s0196-0644(05)80195-7.

Effect of blood pressure on hemorrhage volume and survival in a near-fatal hemorrhage model incorporating a vascular injury

Affiliations

Effect of blood pressure on hemorrhage volume and survival in a near-fatal hemorrhage model incorporating a vascular injury

S A Stern et al. Ann Emerg Med. 1993 Feb.

Abstract

Study hypothesis: In a model of near-fatal hemorrhage that incorporates a vascular injury, stepwise increases in blood pressure associated with aggressive crystalloid resuscitation will result in increased hemorrhage volume and mortality.

Design: This study used a swine model of potentially lethal hemorrhage in the presence of a vascular lesion to compare the effects of resuscitation with mean arterial pressures of 40, 60, and 80 mm Hg. Twenty-seven fully instrumented immature swine (14.8 to 20 kg), each with a surgical-steel aortotomy wire in place, were bled continuously from a femoral artery catheter to a mean arterial pressure of 30 mm Hg. At that point the aortotomy wire was pulled, producing a 4-mm aortic tear and uncontrolled intraperitoneal hemorrhage. When the animal's pulse pressure reached 5 mm Hg, the femoral artery hemorrhage was discontinued and resuscitation was begun.

Interventions: Saline infusion was begun at 6 mL/kg/min and continued as needed to maintain the following desired endpoints: group 1 (nine) to a mean arterial pressure of 40 mm Hg, group 2 (nine) to a mean arterial pressure of 60 mm Hg, and group 3 (nine) to a mean arterial pressure of 80 mm Hg. After 30 minutes or a total saline infusion of 90 mL/kg, the resuscitation fluid was changed to shed blood infused at 2 mL/kg/min as needed to maintain the desired mean arterial pressure or to a maximum volume of 24 mL/kg. Animals were observed for 60 minutes or until death.

Measurements and main results: Data were compared using repeated-measures analysis of variance with a post hoc Tukey-Kramer, Fisher's exact test, and Kruskal-Wallis. Mortality was significantly greater in group 3 (78%) compared with either group 1 (11%; P = .008) or group 2 (22%; P = .028). Mean survival times were significantly shorter in group 3 (44 +/- 12 minutes) compared with either group 1 (58 +/- 6 minutes; P = .007) or group 2 (59 +/- 3 minutes; P = .006). The average intraperitoneal hemorrhage volumes were 13 +/- 14 mL/kg, 20 +/- 25 mL/kg, and 46 +/- 11 mL/kg for groups 1, 2, and 3, respectively (group 1 versus 2, P = .425; group 1 versus 3, P < .001; group 2 versus 3, P = .014). Group 2 animals demonstrated significantly greater oxygen deliveries compared with groups 1 and 3.

Conclusion: In a model of near-fatal hemorrhage with a vascular injury, attempts to restore blood pressure with crystalloid result in increased hemorrhage volume and markedly higher mortality.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources