Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;54(2):305-14.

Inhibition of lipopolysaccharide-induced macrophage tumor necrosis factor-alpha synthesis by polymyxin B sulfate

Affiliations
  • PMID: 8430940
Free article

Inhibition of lipopolysaccharide-induced macrophage tumor necrosis factor-alpha synthesis by polymyxin B sulfate

C P Coyne et al. Am J Vet Res. 1993 Feb.
Free article

Abstract

The antibiotic polymyxin B sulfate is a cationic polypeptide with a unique cyclical configuration and distinct cationic characteristics. In this investigation, polymyxin B was evaluated to determine its ability to prevent synthesis of lactic acid and tumor necrosis factor-alpha (TNF-alpha) by lipopolysaccharide-stimulated strain RAW 264.7 macrophage-like cell populations. In this context, gradient concentrations of polymyxin B were formulated in the presence of fixed concentrations of lipopolysaccharide fractions from Escherichia coli (B4:0111), E coli (J5), Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella minnesota, and S typhimurium (Re). Quantitation of TNF-alpha was established by the application of a tissue culture-based biological assay system, using the WEHI 164 clone 13 indicator cell line. Investigations also included evaluation of the ability of gradient concentrations of lipopolysaccharide fractions from E coli (B4:0111), E coli (J5), K pneumoniae, P aeruginosa, S minnesota, and S typhimurium (Re) to form a complex with polymyxin B. This was established through application of high-performance thin-layer chromatography techniques. On the basis of the known molecular characteristics of lipopolysaccharide, its lipid A-core subfractions, and polymyxin B, these results imply that cytoprotective properties of polymyxin B are attributable to direct interaction and subsequent complex formation. More specifically, the mechanism by which polymyxin B exerts affinity for lipopolysaccharide fractions is proposed to occur through attractive ionic interactions established between the cationic diaminobutyric acid residues of polymyxin B and the mono- or diphosphate group(s) of the lipid A-core moiety. It is highly probable that this molecular phenomenon is accompanied by hydrophobic interactions established between the terminal methyloctanoyl or methylheptanoyl groups of polymyxin B and the saturated carbon chains of the lipid A-core subfraction of lipopolysaccharide fractions.

PubMed Disclaimer

Publication types

LinkOut - more resources