Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 15;90(4):1585-9.
doi: 10.1073/pnas.90.4.1585.

Regulation of peptide-calmodulin complexes by protein kinase C in vivo

Affiliations

Regulation of peptide-calmodulin complexes by protein kinase C in vivo

R D Hinrichsen et al. Proc Natl Acad Sci U S A. .

Abstract

We used the freshwater protozoan Paramecium tetraurelia to investigate the potential regulation by protein kinase C of calmodulin interactions with binding peptides in intact cells. In these organisms, an action potential results in membrane depolarization and a period of backward swimming; repolarization and a return to forward swimming requires the presence of normal calmodulin. We postulated that injection of high-affinity calmodulin binding peptides might interfere with repolarization and thus prolong the period of membrane depolarization. Synthetic peptides spanning the protein kinase C phosphorylation site/calmodulin-binding domains of the myristoylated alanine-rich C-kinase substrate (MARCKS) and the MARCKS-related protein (also known as F52 or MacMARCKS) were injected into cells; these caused a 2- to 3-fold increase in the duration of backward swimming. Similar changes were seen with two other calmodulin-binding peptides. This behavioral response could be prevented by coinjecting calmodulin. Activation of Paramecium protein kinase C with an active phorbol ester completely reversed (within 3 min) the behavioral effects of the normal MARCKS and MARCKS-related protein peptides. Injection of a nonphosphorylatable peptide, in which alanines were substituted for serines, resulted in the usual behavioral response; however, this was not reversed by phorbol ester treatment. The corresponding aspartate-substituted peptide, which has a 10-fold lower affinity for calmodulin, did not prolong backward swimming. These data suggest that these peptides can form complexes with calmodulin at the calcium concentrations that prevail in intact Paramecium cells and that such complexes can be disrupted by protein kinase C phosphorylation of the peptides.

PubMed Disclaimer

References

    1. J Biol Chem. 1992 Jul 5;267(19):13540-6 - PubMed
    1. Nature. 1992 Apr 16;356(6370):618-22 - PubMed
    1. J Biol Chem. 1993 Jan 25;268(3):1501-4 - PubMed
    1. Science. 1978 Dec 15;202(4373):1203-6 - PubMed
    1. Proc Natl Acad Sci U S A. 1985 May;82(10):3187-91 - PubMed

Publication types

MeSH terms

LinkOut - more resources