The contribution of the nonporous distal stem to the stability of proximally porous-coated canine femoral components
- PMID: 8436987
- DOI: 10.1016/s0883-5403(06)80105-1
The contribution of the nonporous distal stem to the stability of proximally porous-coated canine femoral components
Abstract
The contribution of the distal nonporous-coated stem to the stability of the uncemented femoral components, which were porous coated only proximally, was investigated under two conditions: (1) immediately after insertion and (2) at 6 months, 1 year, and 2 years after surgery in a canine model. The relative motion of the femoral components at the bone porous-coating interface under loads simulating the canine midstance was measured at these time periods using displacement transducers. The measurements were repeated after severing the connection between the porous-coated proximal body and the nonporous-coated distal stem through a small hole in the anterior cortex. The results showed that while the distal nonporous-coated stem enhanced the immediate stability of the proximally porous-coated uncemented femoral components, it contributed little to the long-term stability of the femoral components after bony ingrowth had occurred in vivo. The mean relative motion between the body of the prosthesis and the cortical bone increased from 12 microns (+/- 7 microns) to 31 microns (+/- 34 microns) in the posterior transverse direction when the stem was immediately severed after the surgery. However, at 6 months, 1 year, and 2 years after surgery, extensive bone ingrowth had occurred into the proximal porous-coated regions of the body and provided excellent stability to the femoral components. With bone ingrowth, the mean relative motion was less than 5 microns at any site. Under these conditions, severing the stem did not increase the relative motion of the prostheses significantly.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources