Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jan-Mar;39(1):29-38.

Performance optimization of left ventricular assistance. A computer model study

Affiliations
  • PMID: 8439677
Comparative Study

Performance optimization of left ventricular assistance. A computer model study

K L Platt et al. ASAIO J. 1993 Jan-Mar.

Abstract

Performance of temporary parallel left ventricular assistance was investigated and the theoretic conditions leading to optimal behavior of the mechanical system were explored. Computer models of nonpulsatile and pulsatile left ventricular assist devices (LVADs) were incorporated into a previously reported closed-loop simulation of the canine cardiovascular system. Assuming the assisted heart was capable of recovery, LVAD performance was assessed based on both myocardial oxygen balance and cardiac output. With a synchronous LVAD, and operating in a counterpulsation mode, these variables were sensitive to the phasing of pump ejection. Maximum reduction in cardiac oxygen consumption, maximum increase in oxygen availability, and maximum increase in cardiac output with the atrio-aortic device were obtained when pump ejection immediately followed aortic valve closure. These variables were directly proportional to the magnitude of bypass volume. The pulsatile asynchronous and nonpulsatile LVAD models affected oxygen balance in a similar manner, but neither performed so well as the synchronous model when equal bypass volumes were used. Ventricular uptake of blood provided a further 27% decrease in oxygen consumption and further 78% increase in oxygen availability than atrial uptake. In summary, the model predicted that the pulsatile synchronous LVAD, filling from the ventricle during heart systole and ejecting into either the ascending or descending aorta just after ventricular systole, would be most beneficial to both myocardial oxygen balance and cardiac output.

PubMed Disclaimer

Publication types

LinkOut - more resources