Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993;41(2):88-96.
doi: 10.1159/000113826.

How are more complex brains different? One view and an agenda for comparative neurobiology

Affiliations
Review

How are more complex brains different? One view and an agenda for comparative neurobiology

T H Bullock. Brain Behav Evol. 1993.

Abstract

Do more complex brains operate on the same principles as simpler brains, merely employing more of the same; or has evolution produced new principles? A neglected research agenda is the search for relevant differences between brains of animals belonging to different major grades of complexity and cognitive capacity. More complex brains are believed to be capable of more transactions, discriminations, memory and repertoire--functional criteria of 'better' brains. While comparative cognition needs to test these expectations to verify what would be one of the major consequences of evolution, comparative neurobiology needs to discover what, in detail, by all the methods and measures of neuroanatomy, neurophysiology and neurochemistry, is different in more complex brains and which of these differences are relevant to behavioral differences. Formerly it was fashionable to deny differences in the dimension that might be called higher and lower. The criterion of complexity, defined as the number of different parts, processes, interactions and behaviors, may be a useful index of advancement. Unequivocal advancement has occurred between some major taxa, although it is not inevitable. Anatomically, it is clear that novelties have evolved and complexity is more than size or number of the same components. Physiologically, new types of cells, local and larger circuits and emergent properties of assemblies have increased the complexity of operations and organization. It needs to be reasserted that more complex brains have evolved repeatedly, both among invertebrates and among vertebrates, because similar assertions have been incorrectly labeled as 'intuitive scaling' and anthropocentric or moral statements.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources