Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar;132(3):1132-8.
doi: 10.1210/endo.132.3.8440175.

Ligand-binding properties of the two isoforms of the human insulin receptor

Affiliations

Ligand-binding properties of the two isoforms of the human insulin receptor

Y Yamaguchi et al. Endocrinology. 1993 Mar.

Abstract

Tissue-specific alternative splicing of exon 11 of the insulin receptor gene results in 2 mRNAs that differ by 36 nucleotides within the coding region. The 2 transcripts encode 2 protein isoforms with (Ex11+) or without (Ex11-) 12 additional amino acids at the carboxy-terminus of the receptor alpha-subunit. Previous studies of the 2 isoforms of the human insulin receptor expressed in mammalian cell transfectants have revealed small functional differences at the levels of equilibrium insulin binding affinity and acute ligand-induced receptor internalization. In the present study, we determined the biochemical basis for differential insulin binding affinity. Further functional characterization of the 2 receptor isoforms was also performed. The results obtained were as follows. 1) Studies of ligand association demonstrated a faster (1.8-fold) "on rate" for Ex11- receptors than for Ex11+ receptors, as determined by the kinetics of [125I]insulin binding to transfected cells. In addition, dissociation of prebound [125I]insulin from Ex11- receptors was characterized by an accelerated "off rate" relative to that of Ex11+ receptors. 2) Using both intact Chinese hamster ovary (CHO) cells and partially purified solubilized insulin receptors, the ability of insulin-like growth factor-I to compete for [125I]insulin binding to either isoform differed markedly. The mean IC50 for Ex11- was 40 nM vs. 350 nM for Ex11+. 3) Both Ex11- and Ex11+ receptors were equally capable of hybrid formation with endogenous CHO cell insulin-like growth factor-I receptors. 4) The relative abilities of 2 inhibitory polyclonal antiinsulin receptor antisera to displace [125I]insulin binding did not differ between the two isoforms. 5) Studies of insulin-induced (300 nM) receptor down-regulation in CHO cell transfectants suggested preferential down-regulation of Ex11- receptors; however, no down-regulation difference was observed when Rat 1 cell transfectants expressing the two splice variants were studied. These findings further support the idea that the 2 isoforms of the insulin receptor are functionally distinct in important ways.

PubMed Disclaimer

LinkOut - more resources